
Piper Plot and Stiff Diagram Examples

Dave Lorenz

October 24, 2016

Abstract

This example demonstrates how to prepare data for a Piper plot and create a Piper plot
(Piper, 1944) from those data. This example also demonstrates the ternary plot, also called
trilinear or triangular diagram. The Piper diagram replicates figure 37 in Hem (1989). The
trilinear example uses a randomly generated set of data. NOTE: to use the piperPlot function,
you must first call a function to set up the graphics environment like setPage or setPDF, but
these functions are not shown in these examples because setSweave is used in vignettes.

Contents

1 Introduction 2

2 Piper Plot 3

3 Custom Piper Plot 5

4 Ternary Diagram 7

5 Stiff Diagram 8

1

1 Introduction

Some of the examples use data from the smwrData package. Other examples use randomly
generated data. The data are retrieved or generated in the following code:

> # Load the smwrGraphs package

> library(smwrGraphs)

> # Generate a random sample for the ternary diagram

> set.seed(2727)

> # Ternary diagram data

> X <- runif(25, .1, 1.)

> Y <- runif(25, .1, .8)

> Z <- runif(25, .3, 1.)

> # Get the selected groundwater-quality data from Hem

> library(smwrData)

> data(MiscGW)

2

2 Piper Plot

The Piper plot assumes that the data are in similar units. The traditional units would be
milliequivalents per liter. Each column in the dataset must be converted from milligrams per liter
to milliequivalents per liter. This can be accomplished by the conc2meq function in the smwrBase
package, loaded by default when the smwrGraphs package is loaded. The data provided to the
piperPlot function do not need to sum to 1 or 100.

> # Transform the data. This example will ignore potassium, fluoride, and nitrate

> # (carbonate is either 0 or missing and will also be ignored).

> PD <- transform(MiscGW, Ca.meq = conc2meq(Calcium, "calcium"),

+ Mg.meq = conc2meq(Magnesium, "magnesium"),

+ Na.meq = conc2meq(Sodium, "sodium"),

+ Cl.meq = conc2meq(Chloride, "chloride"),

+ SO4.meq = conc2meq(Sulfate, "sulfate"),

+ HCO3.meq = conc2meq(Bicarbonate, "bicarb"))

> # abbreviations allowed in the call to conc2meq

> # The row name identifies the sample source, create a column

> PD$SS <- row.names(PD)

> # setSweave is a specialized function that sets up the graphics page for

> # Sweave scripts. setSweave should be replaced by a call to setPage or setPDF

> # in a regular script.

> # The minimum page size for a Piper plot is 7 inches. No check is made,

> # but the axis title spacings require a graph area of at least 6 inches.

> setSweave("piperplot01", 7, 7)

> # For this example, a separate graph area for an explanation is not needed

> # because there are only 4 groups (individuals).

> AA.pl <- with(PD, piperPlot(Ca.meq, Mg.meq, Na.meq,

+ Cl.meq, HCO3.meq, SO4.meq,

+ Plot=list(name=SS, color=setColor(SS)),

+ zCat.title = "Sodium",

+ xAn.title = "Chloride",

+ yAn.title = "Bicarbonate"))

> addExplanation(AA.pl, where="ul", title="")

> # Required call to close PDF output graphics

> graphics.off()

3

Percent

 100

 80

 60

 40

 20

 0

Calcium

 0

 20

 40

 60

 80

 100

M
ag

ne
siu

m

 0

20

40

60

80

 1

00

Sodium

 0

20

40

60

80

 1
00

Chloride

 100
 80

 60
 40

 20
 0

Bi
ca

rb
on

at
e

 100

 80

 60

 40

 20

 0

Sulfate

 0

20

40

60

80

 1

00

Su
lfa

te
 p

lus
 C

hlo
rid

e

 0
 20

 40
 60

 80
 100

Calcium
 plus M

agnesium

 1
00

80

60

40

20

 0

 100
 80

 60
 40

 20
 0

Pe
rc

en
t Percent

 12−6
 15−1
 17−3
 10

Figure 1. The Piper diagram.

4

3 Custom Piper Plot

This example demonstrates how to use the information that is contained in the output from
piperPlot to customize the Piper plot. The output from piperPlot contains three data frames,
cations, anions, and piper. The first three column names for cations and anions are taken from the
axis labels, forced to be valid names in R. The values in those first three columns are the
normalized (sum to 1 or 100) data. The last two columns in those datasets are named x and y and
are the data projected onto the respective triangular simplex. The columns in the Piper data
frame are called x and y and are the data projected onto the middle (Piper) plot. The data in the
columns named x and y can be supplied to the corresponding arguments in addPiper; cation$x
corresponds to the xCat argument and piper$x corresponds to xPip for example. When the x and y
columns are projected onto the middle (Piper) plot, the arguments zCat and zAn must not be used.

The example below approximately recreates figure 37 in Hem (1989). The size of the symbol in the
middle (Piper) plot are related to the ionic strength in this case, instead of the total dissolved
solids in Hem (1989).

> # Use the data from the previous example

> setSweave("piperplot02", 7, 7)

> # Create the empty Piper plot

> AA.pl <- with(PD, piperPlot(Ca.meq, Mg.meq, Na.meq,

+ Cl.meq, HCO3.meq, SO4.meq,

+ Plot=list(what="none"),

+ ticks = TRUE,

+ zCat.title = "Sodium",

+ xAn.title = "Chloride",

+ yAn.title = "Bicarbonate"))

> # Fill in the symbols in the triangular graphs, do not overwrite AA.pl

> with(AA.pl, addPiper(xCat=cations$x, yCat=cations$y, xAn=anions$x, yAn=anions$y,

+ xPip=NA, yPip=NA, # Missing values are not plotted

+ Plot=list(size=.05), current=AA.pl))

> # Compute a measure of the ionic strength

> PD <- transform(PD, TotalCat=Ca.meq + Mg.meq + Na.meq)

> # Compute the symbol size (mean diameter is .2 inch)

> PD.size <- 0.2*sqrt(PD$TotalCat)/mean(sqrt(PD$TotalCat))

> # Now add the scaled circles to the middle plot

> with(AA.pl, addPiper(xCat=NA, yCat=NA, xAn=NA, yAn=NA,

+ xPip=piper$x, yPip=piper$y,

+ Plot=list(size=PD.size, filled=FALSE), current=AA.pl))

> # Required call to close PDF output graphics

> graphics.off()

5

Percent

 100

 80

 60

 40

 20

 0

Calcium

 0

 20

 40

 60

 80

 100

M
ag

ne
siu

m

 0

20

40

60

80

 1

00

Sodium

 0

20

40

60

80

 1
00

Chloride

 100
 80

 60
 40

 20
 0

Bi
ca

rb
on

at
e

 100

 80

 60

 40

 20

 0

Sulfate

 0

20

40

60

80

 1

00

Su
lfa

te
 p

lus
 C

hlo
rid

e

 0
 20

 40
 60

 80
 100

Calcium
 plus M

agnesium

 1
00

80

60

40

20

 0

 100
 80

 60
 40

 20
 0

Pe
rc

en
t Percent

Figure 2. A customized Piper diagram.

6

4 Ternary Diagram

The ternary diagram also assumes that the data are in similar units. The traditional use would be
milliequivalents per liter for water-chemistry data, or sand-slit-clay for soil data, but other units
are possible. The data provided to the ternaryPlot function do not need to sum to 1 or 100.

This example simply plots arbitrary x, y, and z data and provides an example of the use of
addTernary. In contrast to addPiper, addTernary requires values for all of the x, y, and z

arguments. The data returned in the output from ternaryPlot are components called x and y,
which are the transformed data for plotting in the triangular plot.

> setSweave("piperplot03", 3.5, 3.5)

> # Accept all defaults

> AA.pl <- ternaryPlot(X, Y, Z)

> # Use the chull function to extract the points that define the

> # convex hull of the data.

> AA.pts <- chull(AA.pl$x, AA.pl$y)

> # Close it

> AA.pts[length(AA.pts) + 1] <- AA.pts[1]

> # Select those points and draw the hull

> addTernary(X[AA.pts], Y[AA.pts], Z[AA.pts],

+ Plot=list(what="lines"), current=AA.pl)

> # Required call to close PDF output graphics

> graphics.off()

..

Percent

 100

 80

 60

 40

 20

 0

X

 0

 20

 40

 60

 80

 100

Y

 0

20

40

60

80

 1

00

Z

Figure 3. A very simple ternary diagram.

7

5 Stiff Diagram

The Stiff diagram (Stiff, 1951) also assumes that the data are in similar units. The traditional use
would be milliequivalents per liter for water-chemistry data, but other units are possible.

> setSweave("piperplot04", 6, 6)

> AA.lo <- setLayout(height=3.5, explanation=list(bottom=1.1))

> setGraph(1, AA.lo)

> # Accept all defaults, but subset the data for the small graph size

> AA.pl <- with(PD, stiffPlot(cbind(Ca.meq, Mg.meq, Na.meq),

+ cbind(Cl.meq, SO4.meq, HCO3.meq), ylabels=SS))

> setGraph("explanation", AA.lo)

> addExplanation(AA.pl)

> # Required call to close PDF output graphics

> graphics.off()

10

17−3

15−1

12−6

30 20 10 0 10 20 30
Milliequivalents per liter

Ca.meq

Mg.meq

Na.meq HCO3.meq

SO4.meq

Cl.meq

EXPLANATION

Figure 4. The Stiff diagram.

8

References

Hem, J.D., 1989, Study and interpretation of the chemical characteristics of natural water: U.S.
Geological Survey Water-Supply Paper 2254, 3rd edition, Washington D.C., 263 p.

Piper, A.M., 1944, A graphic procedure in the geochemical interpretation of water analyses:
American Geophysical Union Transactions, v. 25, p. 914–923.

Stiff, H.A., Jr., 1951, The interpretation of chemical water analysis by means of patterns: Journal
of Petroleium Technology, v. 3, no. 10, p. 15–17.

9

	Introduction
	Piper Plot
	Custom Piper Plot
	Ternary Diagram
	Stiff Diagram

